บทที่ 3 การจัดเวลา CPU

บทที่ 3 การจัดเวลาซีพียู (CPU Scheduling)
โดย นายวีรินทร์ เรือนก้อน  รหัสนักศึกษา 6031280063

การจัดเวลาซีพียู
     การจัดเวลาซีพียู (CPU Scheduling) เป็นหลักการทำงานหนึ่งของระบบปฏิบัติการที่ทำให้คอมพิวเตอร์มีความสามารถในการรันโปรแกรมหลายๆ โปรแกรมในเวลาเดียวกัน ซึ่งการแบ่งเวลาการเข้าใช้ซีพียูให้กับโปรเซสที่อาจถูกส่งมาหลายๆ โปรเซสพร้อมๆกัน ในขณะที่ซีพียูอาจมีจำนวนน้อยกว่าโปรเซส หรืออาจมีซีพียูเพียงตัวเดียว จะทำให้คอมพิวเตอร์สามารถทำงานได้ปริมาณงานที่มากขึ้นกว่าการที่ให้ซีพียูทำงานให้เสร็จทีละโปรเซส ในบทนี้ เราจะมาพูดถึงอัลกอริทึมพื้นฐานของการจัดเวลาซีพียูนี้ โดยจะพูดถึงวิธีการหลักๆ ที่แต่ละอัลกอริทึมมีแตกต่างกัน ข้อดีข้อเสีย และความเหมาะสมต่อระบบงานแบบต่างๆ เพื่อการเลือกใช้อย่างถูกต้อง

เป้าหมาย
     ๐ใช้งานซีพียูได้อย่างเต็มประสิทธิภาพ

สิ่งที่ต้องคำนึง
     ๐ในระบบโปรเซสเซอร์เดียวซีพียูจะทำงานได้ครั้งละ 1 งาน
     ๐ถ้ามีหลาย ๆ งานจะต้องเกิดการรอ

ระบบโปรแกรมเดียว
     - ไม่ซับซ้อน
     - ทำงานทีละโปรแกรมจนเสร็จกระบวนการ
     - ทำงานตัวเองจนเสร็จ หรือจนกระทั่งมีการรออะไรบางอย่าง เช่น I/O
     - การรอนี้ทำให้ซีพียูเกิดการว่างงาน อยู่เฉย (idle)


ระบบหลายโปรแกรม
     - เสมือนกับหลายโปรแกรมดำเนินไปพร้อมกัน
     - จะไม่ยอมให้ซีพียูเกิดการรอ
     - โปรเซสใดมีการรอการใช้ อุปกรณ์ I/O จะมีการนำออกไปจากซีพียู และนำโปรเซสใหม่เข้าไปใช้งานซีพียูแทน

ข้อพิจารณาในการจัดเวลา



     การทำงานของคอมพิวเตอร์ ใช้หลักการเก็บคำสั่งไว้ที่หน่วยความจำ ซีพียูอ่านคำสั่งจากหน่วยความจำมาแปลความหมายและกระทำตามเรียงกันไปทีละคำสั่ง หน้าที่หลักของซีพียู คือควบคุมการทำงานของคอมพิวเตอร์ทั้งระบบ ตลอดจนทำการประมวลผล
     กลไกการทำงานของซีพียู มีความสลับซับซ้อน ผู้พัฒนาซีพียูได้สร้างกลไกให้ทำงานได้ดีขึ้น โดยแบ่งการทำงานเป็นส่วน ๆ มีการทำงานแบบขนาน และทำงานเหลื่อมกันเพื่อให้ทำงานได้เร็วขึ้น


 

     การพัฒนาซีพียูก้าวหน้าอย่างรวดเร็ว และถูกพัฒนาให้อยู่ในรูปไมโครชิบที่เรียกว่าไมโครโพรเซสเซอร์ ไมโครโพรเซสเซอร์จึงเป็นหัวใจหลักของระบบคอมพิวเตอร์ตั้งแต่ซูเปอร์คอมพิวเตอร์ถึงไมโครคอมพิวเตอร์ ล้วนแล้วแต่ใช้ไมโครชิปเป็นซีพียูหลัก ในเมนเฟรมคอมพิวเตอร์ เช่น ES9000 ของบริษัทไอบีเอ็มก็ใช้ไมโครชิปเป็นซีพียู แต่อาจจะมีมากกว่าหนึ่งชิปประกอบรวมเป็นซีพียู
     เทคโนโลยีไมโครโพรเซสเซอร์ได้พัฒนาอย่างรวดเร็ว โดยเริ่มจากปี พ.ศ. 2518 บริษัทอินเทลได้พัฒนาไมโครโพรเซสเซอร์ที่เป็นที่รู้จักกันดีคือ ไมโครโพรเซสเซอร์เบอร์ 8080 ซึ่งเป็นซีพียูขนาด 8 บิต ซีพียูรุ่นนี้จะรับข้อมูลเข้ามาประมวลผลด้วยตัวเลขฐานสองครั้งละ 8 บิต และทำงานภายใต้ระบบปฎิบัติการซีพีเอ็ม (CP/M) ต่อมาบริษัทแอปเปิ้ลก็เลือกซีพียู 6502 ของบริษัทมอสเทคมาผลิตเป็นเครื่องแอปเปิ้ลทู ได้รับความนิยมเป็นอย่างมากในยุคนั้น


ทรุพุต (Throughput)
     เป็นจำนวน transaction/request ที่ถูกสร้างขึ้นหรือทำงานได้ในช่วงเวลาการทดสอบหนึ่งๆ
     ค่าใช้สำหรับบอกว่า ระบบงานมีความสามารถในการจัดการงานจำนวนเท่าไรในแต่ละหนึ่งหน่วยเวลานั้นๆ

สูตรการคำนวณนั้นไม่ยากเท่าไร นั่นก็คือ
Throughput = (จำนวน request หรือ transaction) / จำนวนเวลาการทำงานรวม

ก่อนเริ่มทำการทดสอบประสิทธิภาพ คุณจะต้องกำหนดเป้าหมาย
ในค่าของ Throughput  ไว้ก่อนเสมอ ว่าต้องการเท่าไร เช่น
 
     ๐ จำนวนใน 1 วินาที
     ๐ จำนวนใน 1 นาที
     ๐ จำนวนใน 1 ชั่วโมง

ตัวอย่างเช่น
     ระบบงานสามารถทำงานได้ 5 งานพร้อมๆ กันใน 1 นาที
 
ดังนั้น ถ้ามีงานเข้ามา 5 งานพร้อมๆ กัน
ระบบจะสามารถทำงานทั้ง 5 งานได้พร้อมๆ กัน โดยไม่มีงานใดรอเข้าทำงานเลย
แสดงว่าระบบงานมีค่า Throughput  = 5 ต่อ 1 นาที
ดังรูป
 Screen Shot 2557-12-07 at 1.26.51 PM

แต่ถ้ามีงานจำนวน 10 งานเข้ามาพร้อมๆ กันใน 1 นาที
ซึ่งจำนวนงานเกินความสามารถของระบบงาน
ดังนั้นจะมีงานจำนวน 5 งานที่ต้องเข้าคิวเพื่อรอทำงาน ดังรูป

 Screen Shot 2557-12-07 at 1.30.32 PM
หน่วยที่นิยมใช้สำหรับวัดค่า Throughput
นั่นก็คือ Transaction Per Second ( TPS )
นั่นคือจำนวน transaction ที่สามารถทำงานได้ใน 1 วินาที

เวลาทั้งหมด (Turnaround Time) : คือช่วงเวลาทั้งหมดที่ใช้ในการทำงานใดงานหนึ่งตั้งแต่เริ่มต้นเข้าไปในระบบ จนงานถูกทำจนเสร็จเรียบร้อย (รวมเวลาที่รอเข้าหน่วยความจำ เวลาที่คอยอยู่ในคิว เวลาที่ใช้ซีพียู และเวลาของอินพุต/เอาต์พุต)

เวลารอคอย (Waiting Time) : ช่วงเวลาที่งานใดงานหนึ่งต้องรอการทำงานของตัวจัดเวลา โดยไม่รวมเวลาของการใช้ซีพียู และเวลาของการติดต่ออินพุต/เอาต์พุต ส่วนใหญ่ก็คือเวลาที่งานต้องคอยอยู่ในคิว (Ready Queue)

เวลารอคอย (Waiting Time) : ช่วงเวลาที่งานใดงานหนึ่งต้องรอการทำงานของตัวจัดเวลา โดยไม่รวมเวลาของการใช้ซีพียู และเวลาของการติดต่ออินพุต/เอาต์พุต ส่วนใหญ่ก็คือเวลาที่งานต้องคอยอยู่ในคิว (Ready Queue)

เวลาตอบสนอง (Response Time) : คือเวลาที่วัดระหว่างเวลาที่มีการร้องขอการกระทำใดๆ  ต่อระบบแล้วมีการตอบรับกลับออกมา (ความเร็วของเวลาตอบสนองจึงมักจะขึ้นอยู่กับอุปกรณ์อินพุต/เอาต์พุต)

การจัดคิวระยะสั้น (Short-term scheduling) 
การจัดคิวระยะสั้นมีดังนี้
     ๐ การจัดคิวแบบ FCFS
     ๐ การจัดคิวแบบ RR
     ๐ การจัดคิวแบบลำดับความสำคัญ
     ๐ การจัดคิวแบบ SJN
     ๐ การจัดคิวแบบ SRT
     ๐ การจัดคิวแบบหลายระดับ

การจัดคิวแบบมาก่อนได้ก่อน (First-come-first-served : FCFS

     ๐ เป็นวิธีการที่ง่ายที่สุด
     ๐ โปรเซสใดเข้ามารอในคิวก่อนจะมีสิทธิครอบครอง CPU ก่อน
     ๐ โปรเซสที่ได้ครอบครอง CPU จะทำงานไปจนเสร็จ ไม่มีระยะเวลาควอนตัม
     ๐ ถ้าโปรเซสมีการเรียกใช้งานอุปกรณ์อินพุต/เอาท์พุต หรือรอเหตุการณ์บางอย่าง โปรเซสนั้นต้องปลดปล่อยซีพียู และออกจากสถานะรันไปอยู่ในสถานะบล็อค
     ๐ เมื่อการเรียกใช้อุปกรณ์อินพุต/เอาท์พุตเสร็จสิ้นลง หรือเกิดเหตุการณ์ที่กำลังรออยู่ โปรเซสนั้นจะกลับไปอยู่ต่อท้ายคิวของสถานะพร้อม

ข้อดีคือการจัดคิวทำได้ง่ายไม่ยุ่งยากซับซ้อน
ตัวอย่างการจัดคิวเมื่อมี 3 โปรเซส ( A,B,C) ต้องการใช้ CPU 

     
     ถึงแม้ว่าลำดับการเข้ามาในคิวอาจจะเป็น A,B,C แต่การใช้หลักการของการจัดลำดับความสำคัญ  จะจัดคิวออกมาในลักษณะดังนี้


โปรเซส A ต้องรอเวลาในการประมวลผล = 0 วินาที
โปรเซส B ต้องรอเวลาในการประมวลผล = 15 วินาที
โปรเซส C ต้องรอเวลาในการประมวลผล = 16 วินาที
เวลาเฉลี่ยในการรอ = (0+15+16)/3 = 10.33  วินาที

     จากตัวอย่างจะพบว่าการจัดคิวแบบ FCFS เป็นผลเสียอย่างมากกับโปรเซส B คือ โปรเซส B ต้องการเวลาในการทำงานเพียง 1 วินาที แต่ต้องรอให้โปรเซส A ซึ่งเข้ามาก่อนทำงานเสร็จ
     เวลาเฉลี่ยในการรอ = (15+16)/3 = 10.33 วินาที
ทำให้การทำงานของโปรเซส B นั้นใช้เวลา 16 วินาทีจึงจะเสร็จสิ้น
เทียบเวลาในการทำงานคือ 1/16*100 = 6 %
สำหรับเวลาในการรอคือ 100-6 = 94 % ซึ่งจะเห็นว่าโปรเซส B ต้องเสียเวลารอนานมาก

การจัดคิวแบบงานสั้นทำก่อน (Short-Job-first : SJF)

จากปัญหาของการจัดคิวแบบมาก่อนได้ก่อน จึงทำให้เกิดแนวคิดที่จะคัดเลือกโปรเซสที่ต้องการเวลาในการทำงานน้อยที่สุดเข้ามาใช้ CPU ก่อนเพื่อทำให้ โปรเซสที่ต้องการเวลาในการทำงานน้อยจบออกไปได้เร็วขึ้น และจำนวนโปรเซสที่รออยู่ในคิวก็จะมีจำนวนลดลง
     แต่ถ้ามีโปรเซสหลายตัวที่มีความต้องการเวลาในการทำงานเท่ากัน ก็จะใช้หลักการแบบมาก่อนได้ก่อนมาใช้ในการคัดเลือก

ตัวอย่างการจัดคิวเมื่อมี 4 โปรเซส (A,B,C,D) ต้องการใช้ CPU โดยมีลำดับการเข้ามาในคิวเป็น A,B,C,D

ถึงแม้ว่าลำดับการเข้ามาในคิวอาจจะเป็น A,B,C,D แต่การใช้หลักการของ SJF จะจัดคิวออกมาในลักษณะดังนี้
 

เวลาเฉลียในการรอ   0+3+9+16 =28/4=7
เวลาเฉลี่ยในการทำงานเสร็จ 3+9+16+24=52/4=13

    จากการทดลองพบว่า SJF จะให้ค่าเฉลี่ยของการคอยได้ต่ำที่สุด เพราะมีการเลื่อนโปรเซสที่มีเวลาใช้ CPU น้อยสุดมาไว้หน้าคิว
    ปัญหาสำหรับการจัดคิวแบบ SJF คือ ตัวจัดคิวระยะสั้นไม่ทราบว่าแต่ละโปรเซสต้องการใช้เวลาเท่าใด
    วิธีแก้คือ
    ให้แต่ละโปรเซสกำหนดเวลาที่ต้องการในการใช้ CPU มาด้วยให้ OS สร้างโปรเซสเพื่อคำนวณเวลาโดยประมาณของแต่ละโปรเซสที่ต้องการใช้ CPU

การจัดคิวแบบตามลำดับความสำคัญ (Priority Queue)
     วิธีนี้จะมีการจัดลำดับความสำคัญให้กับแต่ละโปรเซสที่ต้องการใช้ CPU โปรเซสที่อยู่ ณ. ต้นคิวก็จะเป็นโปรเซสที่มีความ สำคัญมากที่สุด และลดลงเรื่อย ๆ โปรเซสที่อยู่ท้ายคิวคือโปรเซสที่มีความสำคัญต่ำสุด
     ถ้ามีโปรเซสใหม่เข้ามาในคิว ก็จะมีการแซงคิวได้ถ้าโปรเซสที่เข้ามาใหม่มีลำดับความสำคัญสูงกว่าโปรเซสที่กำลังบรรจุอยู่ในคิว

ตัวอย่างการจัดคิวเมื่อมี 4 โปรเซส (A,B,C,D) ต้องการใช้ CPU โดยมีลำดับการเข้ามาในคิวเป็น A,B,C,D

 

 

ถึงแม้ว่าลำดับการเข้ามาในคิวอาจจะเป็น A,B,C,D แต่การใช้หลักการของการจัดลำดับความสำคัญ  จะจัดคิวออกมาในลักษณะดังนี้

 

โปรเซส B ต้องรอเวลาในการประมวลผล =  5 วินาที
โปรเซส A ต้องรอเวลาในการประมวลผล =  6 วินาที
โปรเซส C ต้องรอเวลาในการประมวลผล =  16 วินาที
เวลาเฉลี่ยในการรอ = (0+5+6+16)/4 = 6.75  วินาที
เวลาเฉลี่ยในการทำงานเสร็จ =(5+6+16+18)/4=11.25

การจัดคิวแบบตามลำดับความสำคัญ (Priority Queue)
     ปัญหาที่สำคัญสำหรับการจัดคิวแบบนี้ ได้แก่ โปรเซสที่มีลำดับความสำคัญต่ำอาจจะไม่มีโอกาสได้ใช้ CPU ถ้ามีโปรเซสที่มีลำดับความสำคัญสูงอยู่เป็นจำนวนมาก หรือมีโปรเซสที่มีลำดับความสำคัญสูงเข้ามาใหม่ตลอดเวลา

     วิธีการพิจารณากำหนดลำดับความสำคัญของโปรเซสต่าง ๆ อาจพิจารณาได้จากองค์ประกอบต่าง ๆ เช่น
เจ้าของโปรเซส : โปรเซสที่มาจากผู้ใช้ทั่ว ๆ ไป จะมีลำดับความสำคัญต่ำกว่า   โปรเซสที่มาจากผู้ควบคุมระบบ
ประเภทของโปรเซส : โปรเซสของงานในระบบแบตซ์ (Batch mode) มักมีลำดับความสำคัญต่ำกว่าโปรเซสของงานแบบตอบโต้ (Interactive mode)
ผู้ใช้ที่ยินยอมจ่ายเงินเพิ่ม
ระยะเวลาที่โปรเซสเข้ามาอยู่ในระบบ

การจัดคิวแบบงานที่เหลือเวลาน้อยทำก่อน (Shortest-remaining-first : SRJ)
     วิธีการนี้จะคล้ายกับแบบ SJF แต่ SRJ จะนำเอาโปรเซสที่เหลือเวลาในการใช้ CPU น้อยที่สุดมาอยู่ที่ต้นคิวเพื่อเข้าไปใช้งาน CPU ก่อน
     วิธีการนี้จะทำให้ทั้งโปรเซสที่ต้องการเวลาในการใช้ CPU น้อย และโปรเซสที่ต้องการเวลาในการใช้ CPU มากแต่ใกล้จะจบสามารถออกจากระบบได้เร็วขึ้น
     วิธีการนี้นอกจากจะต้องทราบเวลาที่ต้องการใช้ CPU แล้วยังต้องมีการบันทึกเวลาที่โปรเซสทำงานไปแล้วด้วย

การจัดคิวแบบวนรอบ (Round-Robin : RR) 
     ใช้กับระบบงานคอมพิวเตอร์แบบแบ่งเวลา โดยมีลักษณะการจัดคิวเป็นแบบ FCFS แต่ให้มีกรรมวิธีของการให้สิทธิในการครอบครอง CPU ของแต่ละโปรเซส คือ “แต่ละโปรเซสที่เข้ามาในระบบจะถูกจำกัดเวลาการเข้าไปใช้ CPU เท่า ๆ กัน ” ซึ่งเรียกช่วงเวลานี้ว่า เวลาควันตัม (Quantum Time)
    ตัวจัดเวลาระยะสั้นจะมีการให้ CPU กับโปรเซสที่อยู่ในคิวแบบวนรอบ โดยมีกฏเกณฑ์ว่า ถ้าโปรเซสใดไม่สามารถกระทำได้สำเร็จภายใน 1 ควันตัม โปรเซสจะต้องถูกนำกลับไปไว้ในคิวเช่นเดิม
    สถานภาพต่าง ๆ ของโปรเซสที่ยังทำไม่เสร็จจะถูกบันทึกไว้ เมื่อถึงโอกาสได้ครอบรอง CPU อีก ก็จะได้เริ่มต้นรันต่อจากครั้งที่แล้วโดยไม่ต้องเริ่มใหม่ทั้งหมด

 


 
ตัวอย่างการจัดคิวแบบ FCFS เมื่อมี 3 โปรเซส ( A,B,C) ต้องการใช้ CPU

 

 

 เวลาเฉลี่ยในการรอ = (15+16)/3 = 10.33 วินาที
ตัวอย่างการจัดคิวแบบ RR เมื่อมี 3 โปรเซส (A,B,C) ต้องการใช้ CPU โดยมีเวลาควันตัมเป็น 1 วินาที



เวลาเฉลี่ยในการรอ = (11+1+11)/3 = 7.67 วินาที

 

   1    2   3    4    5     6    7    8   9  10   11   12   13  14   15 16   17  18  19  20  21  22  23  24  25 26

    จากตัวอย่างจะเห็นว่าการทำงานแบบ RR จะเป็นประโยชน์ต่อโปรเซส B หรือโปรเซสที่ต้องการเวลาในการใช้ CPU น้อยแต่เข้าคิวมาทีหลัง
    ในทางตรงกันข้ามจะเกิดผลเสียต่อโปรเซส A หรือโปรเซสที่ต้องการเวลาในการใช้ CPU มากประสิทธิภาพของการวนรอบขึ้นอยู่กับการกำหนดขนาดของควันตัมเป็นอย่างยิ่ง
ถ้าขนาดของควันตัมใหญ่หรือนานเกินไป ประสิทธิภาพของการวนรอบก็จะใกล้เคียงกับแบบมาก่อนได้ก่อน
ถ้าขนาดของควันตัมเล็กเกินไป ระยะเวลาที่ใช้ในการทำงานของระบบ (throughput) ก็จะช้าลง

ตัวอย่าง
จงหาค่าเฉลี่ยทั้ง 3 วิธี คือ FCFS, SJF และ RR เวลาควอนตัม = 10


 





การจัดคิวแบบหลายระดับ

การจัดคิวดังที่กล่าวมาแล้วทั้งสิ้นเป็นการจัดคิวภายในคิวเพียง 1 คิว เรียกว่าการจัดคิวแบบ 1 ระดับดังรูป

เพื่อให้การจัดคิวเป็นไปอย่างมีประสิทธิภาพมากขึ้น เราจึงจัดให้มีคิวหลาย ๆ คิวแทนที่จะมีเพียงคิวเดียว เรียกว่าเป็นการจัดคิวแบบหลายระดับ



  •  การจัดคิวแบบหลายระดับนั้น แต่ละคิวไม่จำเป็นเป็นต้องเป็นประเภทเดียวกัน

  • การคัดเลือกโปรเซสนั้นจะคัดเลือกจากคิวที่ 1 ก่อนจนกระทั่งโปรเซสภายในคิวที่ 1 ทำงานเสร็จทั้งหมด แล้วจึงคัดเลือกโปรเซสในคิวลำดับถัดไป

  • โปรเซสที่มีความสำคัญมาก มักจะอยู่ในคิวระดับแรก โปรเซสที่มีลำดับความสำคัญน้อยลงไปก็จะอยู่ในคิวระดับหลัง

  • โปรเซสประเภทเดียวกันมักอยู่ในคิวระดับเดียวกัน

 

 

การจัดคิวระยะยาว

การจัดคิวระยะสั้นเป็นการจัดคิวในระดับโปรเซส โดยมีตัวจัดคิวระยะสั้นทำหน้าที่คัดเลือกโปรเซสที่อยู่ในคิวที่มีสถานะพร้อม ส่งเข้าไปอยู่ในสถานะรัน
การจัดคิวระยะยาวเป็นการจัดคิวในระดับงาน ไม่ใช่ระดับโปรเซส
    เมื่อผู้ใช้ส่งงานเข้ามาในระบบ งานเหล่านี้จะไปรออยู่ในคิวงานเมื่อระบบอยู่ในสภาพพร้อมที่จะรับโปรเซสใหม่ได้ เช่น มีหน่วยความจำเหลือมากพอ

    ตัวจัดคิวระยะยาวจะคัดเลือกงานที่อยู่ในคิวงานขึ้นมาพร้อมทั้งสร้างโปรเซสใหม่สำหรับงานนั้น ส่งให้กับตัวจัดคิวระยะสั้นทำงานต่อไป
    ตัวจัดคิวระยะสั้นยังมีหน้าที่ยุติโปรเซสที่จบการทำงานแล้ว
    คิวงานจะต่างกับคิวของโปรเซสเล็กน้อย คือ งานที่ถูกคัดเลือกขึ้นมาและสร้างเป็นโปรเซสใหม่แล้วจะไม่มีการวนกลับมาเข้าคิวใหม่เหมือนกับโปรเซส
    การคัดเลือกงานเพื่อสร้างโปรเซสใหม่ มีวิธีการเหมือนกับการคัดเลือกโปรเซสที่อยู่ในคิว ยกเว้นวิธีแบบ RR ที่ไม่ได้ใช้กับคิวงาน

ระบบหลายโปรเซสเซอร์ (Multi-processor System)

    คอมพิวเตอร์ที่ใช้งานทั่วไปในปัจจุบันจะเป็นประเภท SISD
    ระบบคอมพิวเตอร์ประเภทนี้มีโปรเซสเซอร์อยู่เพียงตัวเดียว
    การทำงานของโปรเซสเซอร์ในระบบนี้จะทำงานได้ทีละ 1 คำสั่งและรับข้อมูลได้ 1 ชุด
    P (Processor) แทนโปรเซสเซอร์  I (Instruction) แทนคำสั่ง  D (Data) แทนข้อมูล และ O (Output) แทนผลลัพธ์


คำสั่งเดี่ยวและหลายชุดข้อมูล
( Single Instruction Multiple Data : SIMD )

    การทำงานของระบบนี้เป็นการทำงานของโปรเซสเซอร์หลายตัวพร้อมกัน หรือที่เรียกว่าทำงานขนานกัน (parallel processing) โปรเซสเซอร์ทุกตัวทำคำสั่งเดียวกันหมด แต่มีข้อมูลเป็นของตนเอง ดังนั้นผลลัพธ์ที่ได้จึงมีหลายชุด



 

    SIMD มีประโยชน์ต่องานทางด้านการคำนวณที่ต้องการคำนวณแบบเดียวกันกับข้อมูลหลาย ๆ ชุดเช่น การบวกเมตริกซ์
เช่น

 

 
หลายชุดคำสั่งและข้อมูลเดี่ยว
(Multiple Instruction Single Data : MISD )

      การทำงานของระบบนี้เป็นการทำงานของโปรเซสเซอร์หลายตัวพร้อมกัน หรือที่เรียกว่าทำงานขนานกัน (parallel processing)
      โดยโปรเซสเซอร์ทุกตัวจะมีคำสั่งของตนเอง แต่ทุกตัวจะใช้ข้อมูลชุดเดียวกัน

 

     เมื่อโปรเซสเซอร์ตัวแรกทำงานเสร็จ ผลลัพธ์ที่ได้จะเป็นข้อมูลของโปรเซสเซอร์ตัวต่อไป เช่นถ้าในระบบ MISD หาค่าจากสมการนี้ y = 2*X2+4 โดยที่ x มีค่าระหว่าง 1 ถึง 5
จากตัวอย่างพบว่ามี 3 คำสั่ง
หาค่า X ยกกำลัง 2
คูณผลลัพธ์จากข้อแรก ด้วย 2
เพิ่มค่าผลลัพธ์ที่ได้จากข้อ 2 ด้วย 4

     การทำงานของระบบนี้เป็นการทำงานของโปรเซสเซอร์หลายตัวพร้อมกันและโปรเซสเซอร์แต่ละตัวจะมีคำสั่งและข้อมูลเป็นของตนเอง
     ดังนั้นในการทำงานแต่ละโปรเซสเซอร์จะเป็นอิสระจากกัน
ตัวอย่างระบบคอมพิวเตอร์ประเภท MIMD ที่เห็นได้ชัดเจนคือระบบเครือข่ายคอมพิวเตอร์ (Computer Network)

 

 

 

Comments

  1. The Ultimate Guide to Pure Titanium Earrings
    › › Clothing › apple watch titaniumtitanium pots and pans Clothing Buy Pure Titanium Earrings best titanium flat iron with our titanium alloy nier T-Shirts today. Choose from 5 titanium hair trimmer different sizes of earrings (standard size 7.5mm) and more. Rating: 4 1,506 reviews $52.00 In stock

    ReplyDelete

Post a Comment

Popular posts from this blog

บทที่ 8 โครงสร้างระบบปฏิบัติการ

บทที่ 1 ความรู้เบื้องต้นเกี่ยวกับระบบปฏิบัติการ

บทที่ 2 การจัดการ Process